Dynamics and energetics of scallop locomotion

نویسندگان

  • Cheng
  • Davison
  • Demont
چکیده

A dynamic model for a swimming scallop was developed which integrates the mechanical properties of the hinge ligaments, valve inertia, the external fluid-flow reaction, the fluid pressure in the mantle cavity and the muscle contraction. Kinematic data were recorded for a swimming Placopecten magellanicus from high-speed film analysis. Dynamic loading experiments were performed to provide the required mechanical properties of the hinge for the same species. The swimming dynamics and energetics based on data from a 0.065 m long Placopecten magellanicus at 10 °C were analyzed. The main conclusions are as follows. 1. The mean period of a clapping cycle during swimming is about 0.28 s, which can be roughly divided into three equal intervals: closing, gliding and opening. The maximum angular velocity and acceleration of the valve movements are about 182 degrees s-1 and 1370 degrees s-2, respectively. 2. The hysteresis loop of the hinge was found to be close to an ellipse. This may be represented as a simple Voigt body consisting of a spring and dashpot in parallel, with a rotational stiffness of 0.0497 N m and viscosity coefficient of 0.00109 kg m2 s-1 for the 0.065 m long Placopecten magellanicus. 3. The external fluid reaction has three components, of which the added mass is about 10 times higher than the mass of a single valve, and the flow-induced pseudo-viscosity compensates for nearly half of the hinge viscosity for the 0.065 m long Placopecten magellanicus. 4. The locomotor system powered by the muscle can be divided into two subsystems: a pressure pump for jet production and a shell-hinge/outer-fluid oscillator which drives the pumping cycle. The dynamics of the oscillator is determined predominantly by the interaction of the external fluid reaction and the hinge properties, and its resonant frequency was found to be close to the swimming frequencies. 5. The momentum and energy required to run the oscillator are negligibly small (about 1 % for the 0.065 m long Placopecten magellanicus) compared with that for the jet. Almost all the mechanical energy from muscle contraction is used to perform hydrodynamic work for jet production. Thus, the Froude efficiency of propulsion in scallops is nearly the same as the entire mechanical efficiency of the locomotor system. This could be a fundamental advantage of jet propulsion, at least for a scallop. 6. The estimated maximum muscle stress is about 1.06x10(5) N m-2, the cyclic work is 0.065 J and power output is 1.3 W. Using an estimate of the mass of an adductor muscle, the work done by the muscle per unit mass is 9.0 J kg-1 and the peak power per unit mass is 185 W kg-1. 7. The time course of the force generation of the contracting adductor muscle is basically the same as that of the hydrodynamic propulsive force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Scallop Theorem for Linear Swimmers

In this article, we are interested in studying locomotion strategies for a class of shape-changing bodies swimming in a fluid. This class consists of swimmers subject to a particular linear dynamics, which includes the two most investigated limit models in the literature: swimmers at low and high Reynolds numbers. Our first contribution is to prove that although for these two models the locomot...

متن کامل

NUMERICAL AND EXPERIMENTAL INVESTIGATION OF WIND PRESSURE COEFFICIENTS ON SCALLOP DOME

The wind loads considerably influence lightweight spatial structures. An example of spatial structures is scallop domes that contain various configurations and forms and the wind impact on a scallop dome is more complex due to its additional curvature. In our work, the wind pressure coefficient (Cp ) on the scallop dome surface is studied numerically and experimentally. Firstly, the programming...

متن کامل

Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint

Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...

متن کامل

Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA

This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...

متن کامل

Mobile Fishing Gear Effects on Benthic Habitats: A Bibliography (Second Edition)

This document reviews the results of a workshop on scallop biology and the effects of scallop dredging on benthic communities. The workshop was held in Kodiak, Alaska, during 10-12 June 1999. A review of the history of the Alaskan weathervane scallop fishery was presented. Other speakers presented papers on scallop biology and fisheries in other cold-water areas. Topics of the papers included p...

متن کامل

Passive swimming in viscous oscillatory flows.

Fluid-based locomotion at low Reynolds number is subject to the constraints of Purcell's scallop theorem: reciprocal shape kinematics identical under a time-reversal symmetry cannot cause locomotion. In particular, a single degree-of-freedom scallop undergoing opening and closing motions cannot swim. Most strategies for symmetry breaking and locomotion rely on direct control of the swimmer's sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 199 Pt 9  شماره 

صفحات  -

تاریخ انتشار 1996